Unification of Quantum and Gravity by Non Classical Information Entropy Space
نویسندگان
چکیده
A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohmentropy). Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity), the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that OPEN ACCESS Entropy 2013, 15 3603 together change the geometry of the phase space of the positions (entanglement). In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum affects geometry of multidimensional phase space and gravity changes in any point the torsion in the ordinary four-dimensional Lorenz space-time metric.
منابع مشابه
Smooth Entropy Transfer of Quantum Gravity Information Processing
We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the ...
متن کاملN ov 2 00 7 A 2 D model of Causal Set Quantum Gravity
Non-perturbative theories of quantum gravity inevitably include configurations that fail to resemble physically reasonable spacetimes at large scales. Often, these configurations are entropically dominant and pose an obstacle to obtaining the desired classical limit. We examine this “entropy problem” in a model of causal set quantum gravity corresponding to a discretisation of 2D spacetimes. Us...
متن کاملEntropy Transfer of Quantum Gravity Information Processing
Submitted for the DAMOP15 Meeting of The American Physical Society Entropy Transfer of Quantum Gravity Information Processing1 LASZLO GYONGYOSI, Budapest University of Technology and Economics, Hungarian Academy of Sciences, SANDOR IMRE, Budapest University of Technology and Economics — We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causali...
متن کاملA 2 D model of Causal Set Quantum Gravity : The emergence of the continuum
Non-perturbative theories of quantum gravity inevitably include configurations that fail to resemble physically reasonable spacetimes at large scales. Often, these configurations are entropically dominant and pose an obstacle to obtaining the desired classical limit. We examine this “entropy problem” in a model of causal set quantum gravity corresponding to a discretisation of 2D spacetimes. Us...
متن کاملEvaporating loop quantum black hole
In this paper we obtain the black hole metric from a semiclassical analysis of loop quantum black hole. Our solution and the Schwarzschild one tend to match well at large distances from Planck region. In r = 0 the semiclassical metric is regular and singularity free in contrast to the classical one. By using the new metric we calculate the Hawking temperature and the entropy. For the entropy we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013